KHP Kunststofftechnik e. K.

Gustav-Hertz-Straße 9 91074 Herzogenaurach

Tel. + 49 (0) 9132 62614 Fax: + 49 (0) 9132 733410 info@khp-kunststoffe.de www.khp-kunststoffe.de

Werkstoffdatenblatt: Nylatron MC 901

Eigenschaften		Prüfmethoden ISO / (IEC)	Einheiten	Nylatron MC 901
Farbe		-		blau
Mittlere molare Masse (mittleres Molekulargewicht)		-	10 ⁶ g / mol	-
Dichte		1183	g / cm ³	1,15
Wasseraufnahme				
- nach 24/96 h Lagerung in Wasser von 23°C (1)		62	mg	49 / 93
		62	%	0,72 / 1,37
- bei Sättigung im Normalklima 23°C / 50% RF		-	%	2,3
- bei Sättigung im Wasser von 23°C		-	%	6,6
Thermische Eigenschaften (2)				
Schmelztemperatur		¥	°C	220
Dynamische Glasübergangstemperatur (3)		-	°C	40 / 5*
Wärmeleitfähigkeit bei 23°C		-	W / (K ⋅ m)	0,29
Thermischer Längenausdehnungskoeffizient				
- mittlerer Wert zwischen 23 und 60°C		9	m / (m · K)	80 x 10 ⁻⁶
- mittlerer Wert zwischen 23 und 100°C		-	m / (m · K)	90 x 10 ⁻⁶
- mittlerer Wert zwischen 23 und 150°C		9	m / (m · K)	•
Wärmeformbeständigkeitstemperatur				
- Methode A: 1,8 MPa	+	75	°C	80
Vicat-Erweichungstemperatur - VST/B50		306	°C	
Obere Gebrauchstemperaturgrenze in Luft				
- kurzzeitig (4)		-	°C	170
- dauernd: während 5.000 / 20.000 h (5)		-	°C	105 / 90
Untere Gebrauchstemperatur (6)			°C	-30
Brennverhalten (7)				
- "Sauerstoff-Index"		4589	%	25
- nach UL 94 (Dicke 3 / 6 mm)		-		HB/HB
Spezifische Wärmekapazität			J / (g · K)	1,7
Mechanische Eigenschaften bei 23°C (8)				
Zugversuch (9)				
- Streckspannung / Bruchspannung (10)	+	527	M Pa	81 / -
	++	527	M Pa	50 / -
- Bruchdehnung / Reißdehnung (10)	+	527	%	35 / -
	++	527	%	> 50 / -
- Zug-Elastizitätsmodul (11)	+	527	M Pa	3200
	++	527	M Pa	1550

KHP Kunststofftechnik e. K.

Gustav-Hertz-Straße 9 91074 Herzogenaurach

Tel. + 49 (0) 9132 62614 Fax: + 49 (0) 9132 733410 info@khp-kunststoffe.de www.khp-kunststoffe.de

Werkstoffdatenblatt: Nylatron MC 901

Eigenschaften		Prüfmethoden ISO / (IEC)	Einheiten	Nylatron MC 901
Druckversuch (12)				
- Drucksp. bei 1 / 2 / 5 % nomineller Stauchung (11)	+	604	M Pa	24 / 47 / 86
Zeitstand-Zugversuch (9)				
- Spannung die nach 1.000 h zu einer	+	899	M Pa	21
Dehnung von 1% führt (σ _{1/1000})	++	899	M Pa	9
Charpy Schlagzähigkeit (13)	+	179/1eU	kJ / m ²	o. Br.
Charpy Kerbschlagzähigkeit	+	179/1eA	kJ / m ²	3,5
Charpy Kerbschlagzähigkeit (15° Spitzkerbe, beidseitig)		DIS 11542-2	kJ / m ²	=
Izod Kerbschlagzähigkeit	+	180/2A	kJ / m ²	3,5
	++	180/2A	kJ / m ²	7
Kugeldruckhärte (14)	+	2039-1	N / mm ²	160
Rockwellhärte (14)	±	2039-2	-	M 85
Shore-Härte D (3 / 15 s)		868		
Gleitreibungskoeffizient μ (15)			•	0,4
Gleitverschleiß V (15)			μ/km	i s
Elektrische Eigenschaften bei 23°C				
Durchschlagfestigkeit (16)	+	(60243)	kV / mm	25
	++	(60243)	kV / mm	17
Spezifischer Durchgangswiderstand	+	(60093)	$\Omega \cdot \text{cm}$	> 10 ¹⁴
	++	(60093)	Ω·cm	> 10 ¹²
Spezifischer Oberflächenwiderstand	+	(60093)	Ω	> 10 ¹³
	++	(60093)	Ω	> 10 ¹²
Dielektrizitätszahl ϵ_{r} - bei 100 Hz	+	(60250)	÷	3,6
	++	(60250)		6,6
- bei 1 MHz	+	(60250)		3,2
	++	(60250)	-	3,7
Dielektrischer Verlustfaktor tan δ - bei 100 Hz		(60250)	-	0,012
	++	(60250)	141	0,14
- bei 1 MHz	+	(60250)	121	0,016
	++	(60250)	*	0,05
Vergleichszahl der Kriechwegbildung (CTI)	+	(60112)	j. - 1	600
	++	(60112)	(8)	600